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ABSTRACT

A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equa-
tions, consistent with the Taylor-Proudman theorem, is presented. The representation insures that
the modeled second-order equations are frame-invariant with respect to rotation when the flow is
two-dimensional in planes- perpendicular to the axis of rotation. The representation satisfies real-
izability in a new way: a special ansatz is used to obtain, analytically, the values of coefficients
valid away from the realizability limit: the model coefficients are functions of the state of the tur-
bulence that are valid for all states of the mechanical turbulence attaining their constant limiting
values only when the limit state is achieved. Utilization of all the mathematical constraints are
not enough to specify all the coefficients in the model. The unspecified coefficients appear as free
parameters which are used to insure that the representation is asymptotically consistent with the
known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the
modeled evolution equations have the same fixed points as those obtained from computer and labo-
ratory experiments for the homogeneous shear. Results of computations of the homogeneous shear,
with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results
are consistently better, in a wide class of flows which the model not been calibrated, than those

obtained with other nonlinear models.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681.

il

PRBGEDING PAGE BLANK NOT FRLMED






1. Introduction

Most turbulence models are devised for use in inertial coordinate systems. Ad hoc changes are
then made to reflect the unusual effects on turbulence of swirl, curved streamlines or rotation of
the coordinate system: one makes the length scale depend on Richardson number or adds terms
to the dissipation equation calibrated to observed behavior. This approach does not make use of
the mathematical requirements that the dependent variables and their evolution equations must
satisfy and leads to models that perform poorly when used in situations substantially different
from the benchmark flows for which they have been calibrated. There is no reason a second-order
modeling method cannot be successfully applied to a high Reynolds number rotating turbulence:
no new unknown terms appear in the equations and, for moderate Rossby number, very little of

the phenomenology on which the technique is based changes.

The effect of rotation on the second-order moments is felt through the rapid-pressure-velocity cor-
relation and the Coriolis terms. The difficulty with the equations, as modeled presently, can be seen
when the equations are transformed to a rotating coordinate system: they are not materially-frame-
indifferent in the two-dimensional limit, Speziale (1981), Hide (1977). This phenomenon, predicted
by the Taylor-Proudman theorem requires that when the velocity field is two-dimensionalized by
rapid rotation, without components along the axis of rotation, the equations must be independent
of rotation. The problem with the current modeled second-order equations results from the inabil-
ity of the rapid-pressure correlation model to reflect the physics embodied in the Taylor-Proudman
theorem. This is another form of realizability: one must obtain, for a bounded flow, in the limit of
rapid rotation, a frame-indifferent turbulence. In such a turbulence the rapid-pressure correlation
appearing on the right hand side of the second order moment evolution equations equals the Cori-
olis terms appearing on the left hand side leaving the equations frame-indifferent. A rapid-pressure
model consistent with these facts, reflecting more of the information contained in the Navier-Stokes

equations, is required.

As a general tool is being developed to compute a wide class of flows for which there may not be any
well documented benchmark flows with which to calibrate coefficients, it is necessary to construct a
model from first principles, incorporating more of the physics. In the present new representation for
the rapid-pressure strain correlation the use of all constants that do not come from first principles
have been minimized: This is done this by requiring the representation to have the proper behavior
in five different limits: 1) frame invariant with respect to rotation when the eigenvalue of the
Reynolds stress tensor, < u;u; >, along the axis of rotation vanishes, 2) the realizable limit in
which an arbitrary eigenvalue of the Reynolds stress vanishes, 3) the joint-realizable limit in which
an eigenvalue of the tensor < 4 >< wu;u; > — < fu; >< Bu; > vanishes, 4) the isotropic limit in
which the anisotropy temsor, b;; = 0, and 5) asymptotic consistency with a stationary state of the

turbulence in which D/Dt b;; = 0. Of these five principles the last one is a statement based on
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experimental observation rather than mathematical fact. It is tacitly asusmed that for a specific
class of flows, to a reasonably suitable approximation, there exists an equilibrium state to which

the flow relaxes upon the removal of any disturbing forces.

Assuring the proper frame-invariance of the modeled second moment equations is done by requiring
that in the limit of a turbulence two-dimensional in planes perpendicular to the axes of rotation
the rapid-pressure velocity correlations in the heat-flux and Reynolds stress equations satisfy the
"geostrophic” constraints, Ristorcelli (1987) and Ristorcelli and Lumley (1991b):

épannX,'p'qj = qunﬂn < Ujug >
qunﬂnqu; = fq;nﬂn < uqﬂ >.

The term geostrophic is borrowed from the meteorological literature where it is used to describe
the low Rossby number balance between Coriolis and pressure forces in the evolution equations for
large scale weather. The constraint, however, is independent of how the flow is two-dimensionalized
and is, therefore, independent of Rossby number. The requirements of the Taylor-Proudman
theorem are subsumed by the requirements of the principle of two-dimensional frame invariance
(2DMFI) first put forward, in the context of turbulence modeling, by Speziale (1981). A flow that
is two-dimensionalized due to stable stratification or magnetic forces is also frame-indifferent in
the two-dimensional two-component limit and the rapid-pressure correlation must still satisfy the

geostrophic constraint for arbitrary rotation.

The requirement of two-dimensional material-frame-invariance comes from first principles: it is
a rigorous limit of the Navier-Stokes equations for the fluctuating velocity, Speziale (1990). The
principle of 2DMFI seems to have been given short shrift. Reynolds (1989), in a rapid distortion
theory analysis of a decaying turbulence, has shown that rotation has a distinct effect on the sec-
ond invariant, II, of the anisotropy tensor, b;;, and goes on further to show that the equations for
the invariants using the current rapid-pressure models are independent of rotation. He concludes
that such models, because they don’t show an explicit dependence on the rotation in the evolu-
tion equations for the invariants, are inadequate for rotating flows. A reference to the evolution
equations for the invariants, for example Speziale et al. (1991), shows that both the production
and dissipation, which are functions of the rotation through their dependence on the Reynolds
stresses, appear in the evolution equations for the invariants. The equations, except for the case of

a decaying turbulence in which there are no production terms, are not independent of rotation.

Shih and Shabbir (1990), following Reynolds argument decide that since the rotation terms do not
explicitlyA appe;r in the evolution eduation for the invariants (Which is true for ariy rapid-pressure
model that is a function of symmetric tensors) that the use of a properly frame-indifferent model will '
not produce the proper turbulence behavior. This argument is specious: the same argument applied
to the trace of the Reynolds stress, the kinetic energy of the turbulence, ¢*> =< u,u, >, one would

aban&onrreﬁnement of rapid-pressuré models because they do not affect the energy of the turbulence
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- the evolution equation for ¢ being independent of the rapid-pressure modeling. However, different
rapid-pressure models produce different Reynolds stresses and different turbulence energies in the
same flows. Even if the models fails to account for some predictions of RDT for a restricted class
of flows neglecting results that are rigorous consequences of the Navier-Stokes equations, Speziale
(1990), are not justified. (It should be kept in mind that the RDT limit violates various equilibrium
assumptions made in the mathematical development of the second-order modeling method). The
2DMFI constraint is relevant to flows other than rotating flows: any flows in which the largest
scales of the motion are two-dimensionalized by strong body forces will come arbitrarily close to
being rotationally frame invariant. A dramatic example of this might be the collapse of the wake
in a stably stratified environment. Shih and Shabbir (1990) also cite Reynolds (1987) as having
shown that the 2DMFI constraint does not provide any new information. Here it is found that
the geostrophic constraint produces six additional linearly independent constraint equations for the

rapid-pressure model.

The present article is a description of the derivation and validation of a rapid-pressure model
that satisfies the principle of material-frame-indifference in the two-dimensional limit. The present
derivation of the 2DMFI model has been given earlier, in departmental reports in Ristorcelli (1987,
1991) or Ristorcelli and Lumley (1991b). In those previous developments of the 2DMFI model
several free parameters were, for simplicity, set to zero. In this paper the stationary points of the
homogeneous shear, as reflected in the structural equilibrium assumption, D/Dt b;; = 0 where
bij =< wiu; > / < upu, > — 1/38;;, are used to set the unknown free parameters occurring in the
model. The algebraic equations describing the stationary states of the homogeneous shear along
with the experimentally determined values of the stationary state are used as constraints to set
the free parameters in the model. This insures that the fixed points of the modeled differential
equations are the same as the fixed points of a particular physical flow. This calibration is done

without sacrificing any of the mathematical principles built into the model.

The next section of this article defines the problem. A third section presents a derivation of the
tensor polynomial model for the rapid-pressure correlation. A discussion of the constraints as well
as a derivation of the new geostrophic constraint is given. A new ansatz for the rapid-pressure
correlation produces a model valid away from both the geostrophic (two-dimensional in planes
perpendicular to the axis of rota&ion) and realizability limits (two-dimensional in that one of the
eigenvalues of the Reynolds stress tensor dissappears). The issues of realizability in the light of
some recent work, Speziale (1993), are discussed. A subsequent section uses results from matrix
algebra to collapse the model to a structure similar to other rapid-pressure models with some
interesting differences. The model is seen to have the same tensor bases as the FLT model and in
the limit of a planar mean flow it has the same tensor bases as the quasi-linear SSG model. The

two subsequent sections show computations done with the model and compare the results to other



models. Following this a general discussion of modeling issues, in the context of realizability and
the use of stationary states as the only self-consistent asymptotic limit for calibrating turbulence

models is given.

2. The rapid-pressure correlation
In an incompressible turbulence in a rotating coordinate system, with buoyancy eflects in the
Boussinesq approximation, the Reynolds stress equations have the following form:
D/ Dt < ujuj > +2(€ikp < uptij > +€jkp < Uptt; >)URo™ = + < Bu; > B+ < Ou; > B
—[<ujup > Uip+ < wp > Ujyp] — < uiuju, >p
—[<pyui >+ <pitj >+ Re™! <uiu; >pp— 2Re™! < tippujp >
D/Dt < Ou; > +2€,ix % < Bu, > Ro™ ! = -—[< Buj > U,'!]:+7< uiu; > T,J']+ < 86 > 3;
— < Buiu; > ;- <pib>
+Re“1(1 + P’I"l)(< Ou; > i =2 <0 u;; > .
The velocity has been normalized by a characteristic velocity u; and the Rossby number is Ro =
uc/TQRLC'wh'ere R, is a length scale and the'rotatiron rate of the framé of reference. The gravity
and rotation vectors are aligned with the 3 axis. Our concern is with the pressure-velocity and
-temperature correlations, < p,;u; > and < p,;f >. An equation for the pressure fluctuations

comes from the divergence of the Navier-Stokes equations for the fluctuating velocity
Uiy +u;Usy; +U5u4,5 Fujug,; — < uius >,5 +2€:kp Qpup Ro™Y = —p,; +00; + Re~lu;,j;

which produces a Poisson equation for fluctuating pressure. The standard linear decomposition

recognizes three terms
_P,Tii = 2Uiyp +€pikaR°_1]“p,i
—PZ,-,- = Uigj Ui — < Uiyj Ujyi >
Pui — Bib,i
where p”, p*, pb are respectively the rapid-pressure, the slow or return to isotropy pressure, and the
buoyancy-pressure. The effects of rotation are felt through the rapid-pressure, p”. Solution of the

Poisson equation for the rapid-pressure is by application of Green’s theorem
$(x) = = (4m)71 [ $(x'),;;dx'/(x = x').

It is the moments of the solution that are required to close the second-order equations. For a
homogeneous mean field, more than an integral scale away from any surfaces, a staightforward

interchange of the order integration and averaging produces:

<‘P7:aj u >+ <plyu; >= —2[Uqyp +€quQkR0_l][Xquj + Xjpgi
< p’,,-b" >= —Q[Uq,p +€quQkRo_1]Xp,‘q

where - I

Xpig = (4)7 [ < 8(x)up(x') > X'/ (x — %)
Xipgj (4m)7 [ < wi(x)up(x') >0 dx’/(x — X').
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The construction of a tensor polynomial model for the volume integrals of the two-point correlations,
Xi;rt and Xjji, is the subject of this article. The rapid-pressure covariance integral appearing in
the heat flux equations, Xjjk, is treated as the Reynolds stresses and the heat fluxes are linked
through Cauchy-Schwarz inequalities, < 86 >< u;u; > — < fu; >< fu; > > 0 and their modeling
cannot be done independently. The rapid-pressure term appearing in the Reynolds stress equations

necessary to treat the mechanical turbulence problem is the focus of this article.

3. Obtaining a representation for the rapid-pressure correlation
A constitutive relation in which the integral of the two-point covariance is parameterized by a local
function of the anisotropy tensor and heat-flux vector is proposed. The most general forms of such

relationships are the following tensor polynomials

Xijki] < upup >=  A16i;6k1 + Aa(6ikbjt + 6465k)

A3bijbrs + Agbijbit + As(birdji + bbjr + Sikbji + ubjx)
A66.~jb§, + A7b?j6kl + Ag(b?k5j1 + b?lﬁjk + 6ikb§1 + 5.'16?,:)
Agb;;brr + A1o(birbji + birb;x)

Allbijbb + Alzb?jbkl + A13(b?kbjl + b?lbjk + bikb?( + b,‘;b?k)
Arab% 0% + A15(b12kb_?l + b?lb?k)

+++ + +

Dy < 8up > bk + Da(< ug > 6p5+ < Buj > bpi)
D3 < up, > brj + Da(< Oug > bpj+ < fuj > bpi)

Ds < 8u, > b}, + De(< Oug > b2+ < Ou;j > bl,)

+ 4+

[D7bpbk; + Ds(bekbp; + bgjbpr)] < Gug >
[Dobapbe; + D1o(berdp; + byjbpk)] < Buq >
[D11bgpbi; + D12a(beid}; + be;b%)] < Bug >

+ + +

+  [D13b3,0kj + D1a(8,6p5 + b2;65k)} < Bug >
+ [Dlsbgpbgj + Dya(blibp; + bgjb;k)] < Oug >
+ [D17bqpbkj + D18(bqkb;2:j + bqupk)] < qu >

where b;; is the anisotropy temsor b;; =< u;u; > / < uguq > —1/36;; and < fu; > is the turbulent
heat-flux. Following Pope’s linearity principle only terms linear in the heat-flux are kept. The A;

and D; are functions of the invariants of b;; and < fu; >.

Parameterizing the integral of a two-point correlation in terms of the local anisotropy tensor is a
substantial simplification requiring consideration. For a turbulence with short term memory and
limited awareness Lumley (1970) has discussed the conditions under which such a constitutive
relation is tenable and carried out a similar expansion procedure, Lumley (1967), indicating how
the truncation errors scale. ;From one point of view, the constitutive relation proposed can be seen
as the first term in a functional Taylor series expansion for the rapid-pressure correlation. As the
correlation decays with distance the primary contribution to the integral will come from regions

within an integral length scale of the local position - thus, in a homogeneous turbulence, the first
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term will constitute a good approximation. Retaining higher order terms of the functional Taylor
series expansion which involves spatial and temporal derivatives of b;; substantially complicates
the problem. It is expected that the retention of only the first order term captures enough of the

physics to allow prediction suitable for engineering purposes.

In applying the above constitutive relation in non-inertial systems there are several phenomena,
peculiar to rotating flows, that may be in conflict with the assumptions of the turbulence closure.
In particular the inertial wave field associated with the rotation may interfere with: 1) the energy
cascade from the large to the small scales of the flow, 2) the universal equilibrium assumed for
the small scales of the flow, and 3) the assumed steadiness of the mean flow. These issues require

consideration.

In a mean flow rotating with speed 2 there will be inertial oscillations with frequency less than or
equal to 2Q. For a quasi-steady assumption to be valid, changes in the mean flow must be slow with
respect to the turbulence’s ability to adjust to the imposed changes. This requires that 2Q < ¢/k
and becomes a lower bound for a Rossby number, Ro = ¢/2Qk > 1, for which an equilibrium theory

is appropriate.

Similar to a stably stratified density field in which stratification inhibits particle motions in the
vertical direction, rotation inhibits transverse displacements of fluid particles. Similar to the radius
of gyration of a charged particle in a magnetic field, the lateral displacement of a turbulent fluid
element in a rotating frame can be characterized by alength scale (g%/3)'/2/2Q where ¢* =< uju; >.
This length scale must be larger than the turbulence length scale £ ~ (g2/3)*/?/¢ to insure that the
transverse confinement by the Coriolis forces does not affect the fluctuating field. This produces a

similar bound on the turbulent Rossby number Ro = ¢/2Qk > 3/2.

The phase coherence necessary for the cascade of energy to the smaller scales of the motion will
be interfered with if the production scales of the motion k¢ ~ 1, where x is the wavenumber, are
subject to an inertial wave field. A different Rossby number can be defined as a ratio of the vorticity
of the production scales of the motion to the background vorticity Ro; = (g2/3)1/2/20¢ = 3¢/2Qq?
using ¢ = (¢%/3)1/2/¢. A spectral Rossby number can also be defined as Ro(x) = u(x)/2Q(k) =
(kE(x))/2/29(27 /) which using the inertial range scaling E(x) = ac*3x~%/3 and ¢ = (¢?/3)'/?/¢
becomes Ro(x) ~ 0.2(k€)*/®Ro,. The effects of rotation decrease as the wave number increases. For
the inertial oscillations associated with the rotation not to interfere with the cascade mechanism
Ro(k) > 1 for k€ ~ 1 is required. Thus for Ro; > 5 the usual parameterization of the spectral
cascade rate, €, in terms of the energy containing scales of the motion is appropriate. For Ro; < 5 the
current dissipation equation requires modification. How the dissipation equation is to be changed
to account for the effects of rotation on the cascade rate is an unresolved issue that is the topic

of current research. It is, however, clear that the assumption of the small scale equilibrium with



the large scales of the motion is valid in most high Reynolds number rotating flows of interest:
the Rossby number of the dissipation scales of the motion is Ro, = Re}/ 2Rot and therefore the

dissipation scales are insensitive to the effects of rotation.

Having dealt with some of the phenomenological issues, the mathematical constraints required of

the pressure-velocity correlation are now investigated.

There are several physical inequalities and mathematical identities the X must satisfy. These prin-
ciples are used to obtain a set of algebraic constraint equations for the A; and D;. For an arbitrary
three-dimensional turbulence the tensor polynomials must satisfy the symmetry constraints,
Xiji = Xijuk
Xiju = Xjin
Xijk = Xikj-
These symmetry constraints are built in to the assumed form of the tensor polynomials. For an
arbitrary three-dimensional turbulence the tensor polynomials must also satisfy the constraints of
normalization, continuity:
Xijek = <wu; > Xigp = < uwif >
Xijjk= 0 Xij;i= 0.
Note that a contraction of the integral of a two-point statistic is a local one-point statistic.

The tensors < u;u; > and < 60 >< uju; > — < fu; >< Bu; > are positive semi-definite. This
reflects the fact that the energy of the turbulence is always positive and that the magnitude of the
“correlation coefficients between the various components of the tensors be bounded by one. These
facts lead to the ”realizability” and ”joint-realizability” constraints which specify the behavior of
the correlations when specific limit states are approached. The relevant portion of the Reynolds

stress transport equations, in principal axes, requires that
D/Dt < uqg >~ [Upy +€;kakRO—1]X;apa —0 as < Uty >— 0

in order to satisfy realizability. The rate of change, due to the rapid-pressure correlation, of the
eigenvalue < u,u, > is required to vanish as the limit state is approached. This insures that the
rapid-pressure correlation model does not cause the solution to go into the unrealizable region in
which < uau, > is negative. This realizability limit is rephrased in terms of the determinant of
the Reynolds stress: F' = (R}, — 3R;;R%; + 2R2;)/6 where R;; =< wu; > [ < upu, > which
can be written in terms of the invariants of the anisotropy tensor as F' = 1 + 91T + 27111 where
IT = —1/2b;bi; = —1/2 < % >, III = 1/3bipbyibji = 1/3 < b3 >. The determinant F varies
between zero and one; F =1 correspbnds to an isotropic turbulence and F = 0 corresponds to the
realizable limit.



Similar reasoning applied to the mixed tensor involving the Reynolds stress, the heat flux and the

variance of the temperature fluctuations, produces the ”joint-realizability” constraint
D/Dt Doy ~ [Up,; +€ikakRO_l][< 06 > Xiapa— < Ouq > X.'ap] —0 as Dyo — 0

which couples the rapid-pressure correlations appearing in the heat flux and the Reynolds stress
equations. A similar determinant function Fy is defined with the normalized D;;, for which 0 <
F; < 1. Joint-realizability reflects the requirement that the magnitude of the correlation coefficients
be bounded by one: the Reynolds stress and the heat-flux take on values ”jointly” such that the
time rate of change of D,o goes to zero as Dy, goes to zero. Additional detail regarding the

application of realizability constraints can be found in Shih and Lumley (1985).

Note that no assumptions regarding the higher order derivatives of the eigenvalue have been made.
The strong form of realizability, in which D?/Dt? < ugu, > > 0 is required at the realizability
limit in order to allow the turbulence to leave the realizable state is not invoked. Such an agency is
already present in the slow terms and it is not necessary to force the rapid terms to be responsible
for such behavior which, as will be seen, is inconsistent with the a small parameter expansion
of the rapid-pressure representation around the realizability limit. Instead a weak .realizability
constraint, as specified by Speciale et al. (1993), Pope (1983), which does not allow the solution
to attain the realizable limit in finite time is invoked. This is done by requiring that the rapid-
pressure correlation vanish more rapidly than the slow-pressure correlation model. This avoids
any assumptions regarding the behavior of the second derivative which are required for the flow to
leave the realizable state which is accessible in finite time in models using the strong form of the
realizability constraint. Moreover recent work by Speziale et al. (1993) indicates that the present
hierarchy of second-order models is inconsistent with the strong form of the realizability constraint.
The rate of rotation of the eigenvalues coming from the second derivative is a sink term of a form
that that cannot be balanced by the present models. In setting the portion of D/Dt < uquq >
due to the rapid-pressure correlation to zero while choosing a return term model that precludes
accessibility of the realizable limit state the weak form of realizability is satisfied by the sum of the
modeled terms on the right hand side of the transport equations. The issue raised by Speziale et
al. (1993) does not impact on the present model, as all the higher order derivatives vanish, and the
realizable limit is not attainable in finite time because the relative rate of dissappearance of the
slow-pressure terms with respect to the rapid-pressure terms. It may, however, require a rethinking
of the modeling principles so that the intrinsic negativity of the second derivative can be properly

balanced if the realizable limit is to be considered accessible.

The last of the constraints to be applied to specify the constitutive relation, the geostrophic con-
straint, is now discussed. The derivation of the constraint, as it has not been given elsewhere in

the published literature, Ristorcelli (1991), is given. For a turbulence two-dimensional in planes
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perpendicular to the axis of rotation Hide(1977) and Speziale (1985, 1990) have shown that the
equations are materially-frame-indifferent. This is a direct consequence of the Taylor-Proudman
theorem. For a modeled set of equations to be consistent with the 2DMFI principle the rapid-
pressure correlations must satisfy the “geostrophic” constraints,

€pgnnXipgi =  €qin ln < uiug >

€pgn 0 Xpgi =  €inlln < ugl > .

Consider the portion of the rapid-pressure correlation associated with the rotation
equQkRO_IX;qu = equQk(47rRo)"1 f < u,-(x)up(x') >, dx'/(x - x’).

A velocity field, two-dimensional in planes perpendicular to the axis of rotation, has the representa-
tion 4y, = €pqkkP,q. Inserting the expression for the velocity field into the integral and contracting
produces, in the integrand, the Laplacian of the streamfunction, ¥,, = €px Qi u, Which reduces the

volume integral of a two-point statistic to a local one-point statistic,
€quQkRo_1X¢qu =Ro 1< up,; >= Ro‘le,,,-ka < uiup >

upon application of Green’s theorem. The geostrophic constraint €pgnQnXipg; = €gjnln < uitiy >
then follows. The satisfaction of the geostrophic constraint means that, when the turbulence is
two-dimensional in planes perpendicular to the axis of rotation, the portion of the rapid-pressure
correlation associated with the rotation is equal to the Coriolis terms effectively removing any
dependence on the rotation rate from the equations. Such a Coriolis-pressure force balance is
found in the large scale atmosphere were it describes the well-known geostrophic wind. A point on
nomenclature: a geostrophic turbulence is one that is two-dimensional because its Rossby number
is small. This latter qualification distinguishes it from a two-dimensional turbulence (that is made

so by some other means) for arbitrary Rossby number. Both, however, are frame-indifferent.

The application of the five sets of constraints - normalization, continuity, realizability, joint-
realizability and geostrophy - produce thirty-six linear algebraic equations (several of which are
redundant) for the thirty-three unknown coefficients A;,(i = 1,15) and D;,(¢ = 1,18) appear-
ing in the tensor polynomials. The equations are of the general form A;;(II,11I)z; = b; where
z; = [Ay,..., Ays, D1, ..., D1g] and where II and III are the invariants of the anisotropy tensor,
IT = =1/2b;b;; = —1/2 < 6% >, IIT = 1/3by,by;bji = 1/3 < 5 >. Using the definition
F = 14 9II + 27111 the general form of the equations can be rewritten as A;;(II, F)z; = b;.

Note that F and II appear linearly in the constraint equations.

The ansatz
X = X+ FXEy

1
Xijk = Xijk + FXijk
is used to extract more information from the constraint equations. Here X° satisfies the set of

constraint equations A;;(I7 ,O)mg = b; obtained by application of all five sets of constraints which
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are simultaneously valid only when F = 0 (or equivalently when I71 = —(I1 + 1/9)/3). While
XF is obtained from the reduced set of equations A;;(I7, F)xf' = b? which satisfy the three sets of
constraints of normalization, continuity and joint-realizability and where Y is a known function of
the X° solution. As there are more unknowns than equations there are free parameters which will
be used shortly to insure that the model is asymptotically consistent with an equilibrium state.
The solution, in which all free parameters are set to zero, and which satisfy all the mathematical
constraints, will be called the basic model and has been given in Ristorcelli (19.87,1991) and Ris-
torcelli and Lumley (1991b). These coefficients are given in Appendix 3. It is to this basic model
that additional terms are added in order to insure that the model is asymptotically consistent with

a known equilibrium state of a particular turbulent flow field.

In reference to the coefficients, A;, of the basic model and defined in Appendix 3, several comments
are appropriate. The A; are nonlinear functions of the invariants of b;;: they are ratios of polyno-
mials of the invariants. The realizability limit is attained along the line JIT = —(I1 + 1/9)/3 on
which F' = 0. At the isotropic limit I = II] = 0 and F = 1, and thus A; + A; = 1/10 and the well
known exact result for isotropic turbulence is obtained. Note that the "off-realizability” correction
FXF is necessary to obtain this limit. The satisfaction of the isotropic limit is discovered to be
a consequence of the constraints used to create the 2DMFI model - it is not a constraint that has
been enforced to obtain the model but is satisfied naturally by the ansatz. This seems to vindicate

- the present procedure.

Note that the coefficients appear to be singular at the one-dimensional limit when 1 + 3IT = 0.
This is actually not the case as the singularities arising from the individual terms in the rapid
pressure representation annihilate each other when summed. This has beeen verified analytically
near the one dimensional limit, as I/ — —1/3, in principle axes of the Reynolds stress tensor using

a perturbation expansion.

It should be emphasized that the form of the rapid-pressure correlations was chosen so that the
coefficients are valid for all states of the turbulence - they are not fixed to their values at the real-
izable limit. The resulting model therefore satisfies all mathematical constraints for any arbitrary
Reynolds stress - not just at the realizability or geostrophic limit states. The second term, F XF,
in the expression for X, represents the ”off-realizability correction”, thus the coefficients, A; and
D;, are functions dependent on the state of the turbulence as parameterized by the invariants and

only attain their realizable limit values at F' = 0.

4. A compacrtr rebréséntation of the 2DMFI rapid-pressure model , S

The rapid-pressure correlation models are usually written in the form they appear in the Reynolds
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stress equations with:

[Tl = 2[Ugyp +epqiQRo™ | Xpig
= 2Uzp +€quQkRo_l][Xiqu + Xjpgil-

tj
which can be rewritten in terms of the strain and rotation tensors as

= 2[qu + qu][Xim' + ijqi]

e

where Sy, = 1/2(Uyp + Upg) and Wyp = [1/2(Uqp — Up,g) + €pgk 2k Ro™] are the usual mean strain

rate and the total or intrinsic rotation rate. The second-order equations are then rewritten as
D/Dt < uiuj > +2€ikp < upttj > QRo™! + 265k, < upui > Y Ro™! = + 15 +T15; +.

D/Dt < Ou; > +26,i% < Ou, > Ro™' = +[I7 + 11 +

where the terms omitted have already been given. Taking the contraction of the fourth-order tensor
on the mean velocity gradients to obtain the form used in the Reynolds stress equations produces,

with ¢% =< upu, >,
L1268 = 2[A + Aj)S;

[(As + Aa + 245)(bipSp; + bjpSpi) + 24565 < b5 >]

(A3 — Aq)(bisWp; + bijpi)]

[(As + A7 + 2A8)(b,2p5’,,,- + b%,8p) + 24g6;; < b°5 >]

[(A6 — A7)(b pi t+ 'pri)]

2[(Ag + Alg)b,pSquqJ + AmbiJ < bS >]

[(A11 + A1z + 2A13)(b1p5qu + bJPSquq:) + 2Ala(b2 < bS > +b;; < 425 >)]

[(All - Al?)(biPqub + bJPWQquI)]

+ 4+ ++ + + +

Here the angle brackets represent the trace of the indicated quantity: eg. < bS >= b;;5;; and
that 7T = -1/2 < b2 >, III = 1/3 < b >. Note that the []}; has zero trace because of
the continuity constraint, X;;jx = 0, requires Az + A4 + 545 — IT(Ann + A12 + 4413) = 0 and
Ag + A7 + 5As + Ag + Ao = 0 It is possible to rewrite the higher order tensor bases in terms of
the lower order terms substantially simplifying the form of the model. The generalized Cayley-
Hamilton theorem is used to rewrite the expression in an irreducible tensor basis. Using the matrix

notation
bSb = —[b?S + Sb?*|4+ <bS>b+1/2<b? > S+ <b?S>1
bSb? + b2Sb = —1/3 < b3 > S+ < b%S > b+ < bS > b?

the 2DMFT rapid-pressure correlation can be written more compactly as
51242 [Bs+ < b% > B{,’+ < b > BY'1S;

Ba[bipSp; + bipSpi — 2/3 < bS > 6;5] + By’ < bS > [b%; + 211/35;;]

Bs[biyWy; + b5, Wil + [Be < S > + B’ < b2S >]b;;

B7[b2,5,; + b2 Spi —2/3 < b2S > §ij]

BS[b? Woi sz] + B9[btqupqu + bJPWQqui]

+ 4+ +
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where the values of the B; in terms of the A; are given in Appendix 1. The above representation
of the rapid-pressure correlation will be called the basic or uncalibrated model. The coefficients,
B;, appearing in the base 2DMFI model above come from first principles: they do not result from
any numerical optimization with experimental or numerical data. Comparisons to the FLT model,
Fu et al. (1987), shows that the two models have the same tensor structure containing the same
generators. The only difference is in the terms proportional to [b;] and [b% + 211/36;], usually
identified with the slow-pressure’s contribution to the pressure-strain correlation and calibrated
accordingly, now reflect a contribution from the rapid-pressure. Contraction of the irreducible form
of Xji on the mean velocity gradients has produced the bases [b;;] and [b7; + 21T/34;;] in which
the coefficients are functions of the invariants < 5§ > and < 52§ > in addition to the dependence
on < b2 > and < b3 > appearing in the A;. The two tensor bases, usually associated with the
slow-pressure correlation, arise as a consequence of starting with the two-point volume integral

and represent a contribution to the pressure-strain correlation whose structure is identical to the

slow-pressure models but whose genesis is in the rapid-pressure.

Speziale et al. (1991) have also written a general form for the pressure-strain covariance. It is linear
in the mean velocity gradients and nonlinear in the anisotropy tensor. Their expression contains
the same generators as the present model except for the cubic term [bWb? — b2Wb]. Speziale
et al. (1991) use results from rational mechanics (¢f. Smith (1971)) to expand in a functional
basis. The present strategy uses a polynomial basis for which the generator [bWb? — b2Wb] is
not redundant, Spencer (1971). The tensor polynomial given above is irreducible and the basis is
optimal. Speziale et al. (1991) have shown, for planar flows, that the generators nonlinear in the
anisotropy tensor can be expressed in terms of generators linear in the anisotropy tensor. This fact
led to the very simple form of the SSG model, Speziale et al. (1991). This fact, from a rigorous
though not necessarily practical point of view, limits the model to planar flows. The results of
Speziale et al. (1991) can be used to recast the present model into its linear planar form. For

planar flows Speziale et al. (1991) has shown that
[b2,Sp; + b2, 8pi —2/3 < b28 > 6i5] = —b33[bipSp; + bjpSpi — 2/3 < bS > 8i;] — 2/3(111/b33)S;;
| [67,Wpi + b, Wpi] = —bsa[bipWp; + bjpWpil
from which it follows that
[bequpbﬁj + bipWepbZi] = (TT + b3zbaz)[biyWhp; + bjp Wil

and the planar form of the 2DMFI rapid—préssure model can be written as

[T /24> = (Cs = 21ICY + 3ITICY' — 2/3(111 /b33)C7)[Si;]
+ (C4q = b33C7)[bipSp; + bjpSpi — 2/3<bS > 6;]+Cy <bS > [b,zj + 211/36;;]
+ (Cs — b33Cs + (II + b33b33)C9)[b,‘prj + bijp,‘] + (Cs < bS > +C"1" < b5 >)[b,‘j]
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which has the same linear tensor bases as the quasi-linear SSG model. The form of the model
in planar flows is consistent with to the SSG model which is the topologically generic form of a
general class of models f&r the fourth order rapid-pressure tensor X;jr. The coefficients in the
model, however, are nonlinear functions of the invariants while in the SSG model, given below for
comparison,
= —(2C1€ + CyP)[bi;] + Cae[b}; + 211/36;5] + (C3 — (=211)12C%)k[S;;)
+  CyuklbipSpj + bjpSpi — 2/3 < bS > 6]+ C5k[b,'prj + bijp,']

the C; are numerical constants and one coefficient in the [S;;] term, in the rapid-pressure portion of
the model is nonlinear. The C; in the SSG model are determined by a numerical optimization so that
the model reproduces as closely as possible: 1) the stationary state of the homogeneous shear and
2) maximizes the kinetic energy growth rate of the rotating homogeneous shear as close as possible
to the /S = 0.25 predicted by rapid distortion theory without introducing a Richardson number
similarity, Speziale and Mhuiris (1989), while insuring that the points of exchange of stability are
outside of those predicted by the linear theory of Bertoglio (1982).

In the return term of the SSG model the correction to the linear b;; term arrived at more or
less intuitively by Speziale et al. (1991) is, to lowest order, vindicated by the present results.
Speziale et al. (1991) have altered the term linear in b;;, usually associated with the slow-pressure
correlation, to include a term involving the mean flow, a term proportional to the production
P = -2 < uu; > Uy,;: the usual Creb;; — (Ci1e+ CyP)bi;. The present analysis indicates that the

portion of the rapid-pressure contribution to the pressure-strain correlation, linear in b;;, has the ‘
form [Bg < bS > +Bj' < b2 >]b;;. Note that < bS > can be written in terms of the production
as < bS >= —P/q%. The present analysis suggests the possibility of adjusting the nonlinear return
term for mean velocity gradient effects in a similar way. In the present model the portion of the
rapid-pressure quadratic in the anisotropy tensor is By’ < bS > [b}; + 2I1/36;;] and therefore also

scales with the production.

Speziale et al. (1992) have reflected on the ambiguity of the distinction between the rapid- and slow-
pressure contributions to the pressure-strain correlation. They have modeled the whole pressure-
strain correlation but whether to interpret their adjustments (as described in the previous para-
graph) as incorporating the effects of the mean strain on the return terms or as contributions of the
rapid-pressure to the total pressure-strain is not clear. Here, however, the distinction is clear. The
present analysis starts from the tensor polynomial representation for the rapid-pressure integral
and produces terms whose tensor structure is identical to that which are traditionally called the
slow-pressure. The other non-linear pressure-strain models, FLT or the SL model, Shih and Lumley

(1985), do not have terms in b;; or b7, that can be similarly identified.

The derivation of a rapid-pressure correlation satisfying all the limit states and valid away from the
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limit state, though mathematically rigorous, will not necessarily produce a model that performs
better than other models in flows for which latter models are calibrated. However, for the general
class of flows for which second-order models are suitable we are of the opinion that the satisfaction
of all mathematical constraints constitutes a necessary (though not sufficient) requirement to assure
the predictive capabilities in flows different from those for which the models are calibrated. The
existence of several free parameters can then be used to calibrate the model to specific classes of
flows of computational interest. This tack is taken in the next section where the fixed points of the
modeled equation are matched to the fixed points of the homogeneous shear. In this way a model

for the class of flows in which the mean shear is the dominant production mechanism is created.

5. Calibrating the rapid-pressure correlation representation

The coefficients, B;, appearing in the 2DMFI model come from first principles: they do not result
from any calibration with experimental or numerical data. They represent the minimum number
of determined coefficients necessary to satisfy the mathematical constraints on the rapid-pressure
correlation for a three-dimensional Reynolds stress. It, however, is not a unique representation:
there are an infinity of solutions corres‘ponding to different values of the free parameters which, in
the basic model representation shown, have been set to zero. Computations have shown that the
predictive capabilities of the basic model are inadequate. The mathematics built into the model do
not capture the experimentally known stationary points of homogeneous shear. To compensate for
some of the approximations made in the mathematical development the model is modified so that
the modeled evolution equations have the same asymptotic behavior as that observed: to the basic
model additional terms are added to insure that the model is consistent with an equilibrium state
of a particular benchmark turbulent field. This is done without sacrificing any of the mathematical

principles built into the model. It, however, can not be done arbitrarily.

The strategy is to require asymptotic consistency with an equilibrium state. The modeled evolu-
tion equations are required to have the same fixed points as those observed in experiment. The
equilibrium constraint is used to obtain additional constraints equations to specify the free param-
eters. This is very similar to the strategy employed so far in that limit states are used to set model
coefficients. Here, of course, the equilibrium state is much closer to those expected to be seen in
flows of engineering interest. The free parameters will now be called calibration coefficients, Af,

and will be collectively denoted by X5, appearing in the decomposition

X = XOu+ FXLy+ FXZ.

X fjokl represents the additional constant terms necessary to capture the stationary state. This form
is equivalent to assuming that the coefficients in the tensor polynomial have the form A; = A? +
FAF 4 FA¢. The A¢ satisfy normalization and continuity constraints and the algebraic equations

describing the stationary state of a homogeneous shear. It is at this point that numerical or
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experimental data for the asymptotic values of the anisotropy tensor, the production to dissipation,
(P/€)oo, and the ratio of time scales, (Sk/€)oo, are necessary. The details of this strategy are now

given.

The AS satisfy the six equations given by the homogeneous form of normalization and continuity
constraints, X7, = 0, X7 = 0, which are valid for all states of the turbulence. Substituting in

the calibration coefficients allows six A¢, to be expressed in terms of seven free parameters,

AS = —(50A5 + 1245 + 4A5)IT/15 + (AS, + ASy — 6A13)I11/5
S = (204§ + 3A5+ ASo)I1/15 — (3AS, + 3AS; + 24,3)111/10
S = —11/3A% + (AS, + 3A5, +8A4S3)I1/3
€= —4/3AS + 2(AS, + 2453)11/3

AS = —1/3(11A5 + 345 + ASp)
§= —2/3(245 + Ajp)-

The seven parameters will be determined by asymptotic consistency with a particular equilibrium
state. At this point the rapid-pressure correlation model is fully general and it is possible to write

it in its final form, without specifying the calibration coefficients, as

I-Lrj /2q2 [Cs — 2IICY + 3111CY")S;; -

Ca[bipSpj + bjpSpi — 2/3 < bS8 > 6;;]+C{! <bS > [b?j + 211/36;;]
Cs[bipW,; + bijp,‘] +[Ce < bS5 > +CY' < b2S >]b;;

C7[b?p5pj + bfpS,,,- -2/3< b2S > 6,']']

C8[b?prj + b?pri] + C9[biqupb3j + bijqpbgi]-

+ 4+ 4

The calibration coefficients, A¢, have been added to the base model coefficients, B;, to obtain the

final model coefficients C;:
Cs = B3 —2F(10A§ + 3A5 + A$o)II/5 — F(Af, + Afy + 14A7))11/5
Cf = BY + F(A5 + Af)
C3'= By —1/3F(Af; + Afy + 2473)
Cy = By + F(-3A§ + II(Af, + Af, + 4A%3))
Ci = BYl + F(A5, + A, + 445,)
Cs = Bs+ F(-7/3A% + (—Af; + 345, + 4455)11/3)
Ce = Bs + F(245 + 44%,)
C7 = By —3F(A§+ A§ + Afo)
Cs = Bs — 1/3F(7A§ + 3A§ — AS,)
Co = Bg + F(Af, - A1)
Note that the traces can be written in terms of the production < bS >= —P/¢? and < b25 >=
1/2b33P/q%; in planar flow < bS >= —2b135 and < b2S >= —b12b33P/¢?.

The calibration coefficient A¢ involves adjustments to the generators [bS + Sb — 2/3 < bS > 1]
and [bW — Whb] which are linear in the anisotropy tensor. Numerical experiments have indicated
that it is important in establishing the levels of the normal components of the Reynolds stresses.
Combinations of A§, A and A§, affect the generators quadratic in the anisotropy tensor, [bZS +

b2S — 2/3 < b2S > 1] and [b®W — Wb?] and to a very small degree the S term. Combinations of
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only A§ and A, can be used to control the contribution to []” proportional to b and S. Experience
with the FLT model, Fu et al. (1987) indicates that the cubic term [bWb? — b?Wb] involving
the rotation tensor is important in controlling the relative level of the normal components of the
Reynolds stress in situations with rotation. This suggests that the calibration coefficients A§,, A{,
and Af,; are important. The combination of calibration coefficients Af; — Af, controls tensor

products like [bWb%—~b?*Wb] and combinations of terms A$,, A§, and A$, control the contributions
of the b? and S.

The existence of the free parameters allows the model to be calibrated to a specific class of flows
of computational interest. For example, in a buoyant flow one might evaluate the fixed points
using the experiments of the homogeneous shear in a constant mean temperature gradient thus
producing a model suitable for a class of stratified flows of geophysical interest. This calibration
would, of course, involve the model for the rapid-pressure correlation appearing in the heat flux
equation. For many engineering problems the primary production mechanism is the mean shear
and capturing the fixed points of the homogeneous shear in the modeled equations will make the
model suitable for a wide class of flows. At this point one could also consider using the exact
results of rapid distortion theory to obtain values for the calibration coefficients. This, however, is
inconsistent with the equilibrium hypothesis underlying the local approximation to the constitutive
relation invoked for the rapid-pressure correlation integral. Moreover the rapid distortion problem
is linear admitting a superposability that is not possible in the context of nonlinear second-order
closures. The homogeneous shear structural equilibrium will be used to fix the representation for

the rapid-pressure correlation.

The fixed points of the homogeneous shear are now built into the model by specifying the calibration
coefficients. The modeled evolution equations for the homogeneous turbulence in a mean velocity

gradient, are

D/Dt < uiuj; >= —2¢€ip < upti; > Qi — 2€5kp < Uptt; > Yp— < usup > Ujop — < ujup > Uiy
» +II5; — Crebi; + Coelb; + 2116;;/3] — 2/3¢é;;

D/Dte = —(Cq < uiuj > Ui,j + Cee) €/k

assuming local isotropy for the dissipation. The terms —Cyeb;; + Cac[b?; + 211/36;;] represent the
return to isotropy pressure correlation. Using < u;u; >= ¢%(b;; + 1/36;;) the equations for the

anisotropy are

D/ Dt bij = —2e€ikpbp; Qi — 2€54pbpi Ui — [biPUj,p +b;pUisp —2/3(5,’,‘ < bS >]
—2/35,']' + Qbij <b§S >+ HIJ /(]2 - (C] - 2)b,-j£/q2 + Cz[b?j + 2[[/3(5,‘_,']6/(]2.

The mean strain and rotation tensors are S;; = 1/25%(6;16;2 + 6i26;1) and Wi; = 1/2W*(6:16;2 —
0i26;1), where, § = Uy,3 = §* = W*, Setting the D/Dt b;; = 0 produces three algebraic equations.
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Inserting the experimentally determined asymptotic values of b;; and Sk/¢ produces three addi-
tional constraints leaving four of the seven A{ as free parameters. The data from the experiments
of Tavoularis and Corrsin (1981), Champagne, Harris and Corrsin (1970), Tavoularis and Karnik
(1989), and the DNS of Rogers et al. (1986) are summarized in the Table 1.

TC CHC | TK.A | TK.C | TK.D | TK.G | TK.J | TK.K | DNS
it 0.197 | 0.137 | 0.217 | 0.257 | 0.197 | 0.157 | 0.157 | 0.147 | 0.215

b33 -0.14 [-0.165 | -0.165 | -0.165 | -0.17 | -0.148 | -0.154 | -0.149 | -0.158
b33 -0.143 | -0.083 | -0.133 | -0.143 | -0.133 | -0.113 | -0.103 | -0.093 | -0.153
b -0.053 | -0.053 | -0.083 | -0.113 [ -0.063 | -0.043 | -0.053 | -0.053 | -0.062

(P/e)o | 1.75 1.0 | 138 | 1.37 | 1.64 | 1.33 | 145 | 1.37 | 1.80
(SK/6)o | 6.25 | 3.03 | 42 | 415 | 482 | 45 | 471 | 460 | 5.7

Table 1. Data for the homogeneous shear flow.

There is considerable scatter in the data due to the technique used to generate the turbulence,
individual wind tunnels in which the different experiments were done, and experimental error. Not
all the data, as has been qualified in the references from which the data is drawn, represent the
asymptotic state. The following fixed point values are taken to be representative: b3} = 0.203,
b3 = —0.156, b33 = —0.143, b33 = —0.06, (Sk/e)o = 5.54, (P/€)oo = 1.73. They are obtained by a
simple average of the data of TC, TK.D and the DNS. These three cases are chosen because they
have the highest values of of the nondimensional time (S K /e)s corresponding to the flows that are
furthest in their development to the asymptotic state. The values of the invariants corresponding to
these values of the anisotropy tensor are: Il = —0.057, 111, = 0.0032, F, = 0.573. Substituting
these asymptotic values into the fixed point equations, D/Dt b;; = 0, reduces the number of free

parameters from seven to four.

AS = —0.29 — 0.06(AS, — AS)
S = —3.6+5A45 — 245, — 12.TA5 — 3.84§
¢, = —24.5— 44.245) — 2AS, + 2945 — 84S

This set of constraint equations is dependent on the model for the return to isotropy pressure. For
simplicity the the nonlinear return coefficient has been set to zero, C; = 0, and the well accepted
value, C{° = 3.4, has been chosen. There are still four free parameters. The following values of the
four free parameters are chosen: A§ = 0.8, A§ = —1.0, Ay = 0.01, A{3 = 0. The undetermined free
parameters have been set by matching the values of the anisotropy for the log layer. The procedure

is outlined in more detail in Appendix 1.

6. Computations and comparisons in homogeneous turbulence
The 2DMFI model falls into the same class of representations as the FLT and SL models: they all
use nonlinear terms and invoke some form of realizability constraint to evaluate the coefficients. For

this reason the 2DMFI model will be compared primarily to the nonlinear SL and FLT models. For
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completeness and because it appears to be a very successful model for the planar flows, computations
with the quasi-linear SSG model are also shown. The SSG model is linear in the anisotropy tensor
though nonlinear in that the scalar coefficients are functions of the invariants of the the anisotropy
tensor. It should, however, be kept in mind that the SSG model satisfies realizability for the kinetic
energy and not for the individual Reynolds stresses and is therefore in another class of models. This
issue is more fully explored in a subsequent section. Results are not compared to the LRR model
as, in concordance with the observations of Speziale et al. (1991), the SSG model is viewed as an

updated optimized LRR model.

In all the calculations with the 2DMFI model a simple linear Rotta type model for the slow pressure
correlation will be used. This corresponds to C; = 0 in the canonical form given above and is
consistent with the present calibration to the homogeneous shear. For the linear return coefficient
a simple expression, C; = 2 — 31I1FY? is used. This satisfies the isotropic limit, C; = 2.0, and
is consistent with the assumed value for the asymptotic homogeneous shear, C;° = 3.4. The form
chosen is consistent with a weak form of realizability and the recent results of Speziale et al. (1993)
regarding the rate of disappearance of the rapid-pressure correlation relative to the return pressure

correlation as the realizability limit is approached.

The values used for the constants in the dissipation equation are: C,; = 1.44, C,; = 1.83. Note
that this corresponds to a single universal fixed point (P/¢)e = 1.88 independent of rotation.
The single fixed point is a well-known deficiency common to all the present forms of the modeled

dissipation equations.

Case 1: Homogeneous shear ,

The calibrated model is now used to compute the time evolution of the homogeneous shear flow. The
mean strain and rotation tensors are Si; = 1/25*(6i168;2 + 6i26;1) and Wy; = 1/2W* (61652 — 6i2651),
where, § = Uy,; = §* = W*. In Figure 1 the time evolution of the turbulence energy is compared
to the LES of Bardina et al. (1983), and the three models FLT, SL and SSG. A similar monotonic
behavior is found for other statistics, b3, b11, 17 in the flow and, as they do not constitute new or
different information, are not shown. In general, starting from physically realistic initial conditions,
the flow attains its asymptotic state rapidly and monotonically. The asymptotic states which the
different models attain are given in the accompanying table. The column labeled experimental data

is an average of the three cases TC, DNS and TK.D.
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Equilibrium 2DMFI SL FLT SSG Experimental
Values Model Model Model Model Data
s 0.209 0.202 0.208 0.219 0.203
b$3 -0.155 -0.080 -0.146 -0.164 -0.156
%9 -0.148 -0.195 -0.144 -0.146 -0.143
bs3 -0.061 0.007 -0.064 -0.073 -0.06
(P/€)oo 1.88 3.42 1.99 1.88 1.73
(SK/€)oo 6.08 21.35 6.84 5.76 5.54

Table 2. Comparison of the model predictions for the equilibrium values in homogeneous shear flow
(P/e = 1.88) with the experimental data given in Tavoularis and Karnik (1989).

Note that the different (P /). attained are functions of the different C¢y and C,3 used in the models.
The present form of the dissipation equation insures that the quantity (P/e)o = 1.88 regardless
of initial conditions for all Sk/e. This is a shortcoming of the modeled dissipation equation and

shows up in a larger b;; than the flow for which it was calibrated in which (P/e)eo = 1.73

Case 2: The equilibrium wall layer

Another simple but important test cases is whether the model can capture the stationary state of
the log-layer in the channel flow. The homogeneous shear and the log-layer are similar in that they
achieve, to a suitable approximation, an equilibrium state. Abid and Speziale (1993) have discussed
the relevance of this test case and noted the inability of most rapid-pressure closures to perform
successfully in the log-layer. Our results are in agreement with their contention that a model which
is asymptotically consistent with the stationary states of the homogeneous shear will also do well
in the log-layer. The models are compared to the DNS of the channel flow of Kim (1993) which
is an update of the simulations reported in Kim et al. (1987). The data presented represent an

average of the values of the anisotropy in the region 70 < y* < 100 outside the viscous sublayer.

Equilibrium 2DMFI SL FLT SSG DNS Experimental

Values Model Model Model Model Data Data

9 0.180 0.079 0.141- 0.201 0.180 0.22

% -0.141 -0.116 | -0.162 -0.160 -0.134 -0.16

% -0.142 -0.082 -0.099 -0.127 -0.140 -0.143

b3 -0.039 0.003 -0.042 -0.074 -0.040 -0.06
(P/€)oo 1.0 1.0 1.0 1.0 1.0 1.0
(SK/€)oo 3.55 4.30 3.09 3.12 3.73 3.1

Table 3. Comparison of the model predictions for the equilibrium values in the log-layer of turbulent
channel flow (P/e = 1) with the DNS data of Kim (1993) and the data of Laufer (1951) given in
Abid and Speziale (1993).

Case 3: Homogeneous shear with rotation

The present test case, the homogeneous shear with rotation, and the next test case, the homogeneous
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shear with streamline curvature, are important test cases. In both these cases additional forces,
which stabilize or destabilize the flow, are present. These effects appear in the evolution equations as
additional production mechanisms for the Reynolds stresses. In the case of rotation the production
terms in the evolution equation for the turbulence kinetic energy do not directly depend on the
rotation: the turbulence energy production depends on the rotation only through the off-diagonal
components of the Reynolds stress while in the case of streamline curvature the production terms
in the evolution equation of the turbulence kinetic energy do directly dependent on the curvature.
These two cases are important test cases not only because 1) the models have not been calibrated for
them but also because 2) the model will have to predict both the stabilization and the destabilization
of the turbulence and 3) the critical values of the governing parameters which demarcate the regions

of flow stabilization from flow destabilization.

For flows in the rotating coordinate system the Coriolis terms must be carried and W;; appearing
in H,TJ must be replaced by the total rotation tensor W;; + €;;x. Thus in the rapid-pressure model
w* = 5(1-2Q/85).
Figure 2b-2e show how the models perform in rotating shear for rotation to shear ratios /5 =
0,1/4,1/2 compared to the LES data of Bardina et al. (1983) in Figure 2a. In general, all the
models are able to capture both flow stabilization for some A > §2/S > B and flow destabilization
for some A < /S < B. The points A and B represent the points of neutral stability on a
bifurcation diagram in the phase plane (¢/5k) and (£2/5)s. All of the models have a bifurcation
diagram of the same general form, Speziale and Mhuiris (1989), indicating a stabilization of the
flow outside of some region of approximate size 0 < Q/§ < 0.5, predicted by the linear rapid
distortion theory of Bertoglio (1982). The most important facts concerning the different models
for the homogeneous rotating shear can be summarized by indicating the unstable regions in which
the models predict a non-trivial equilibrium (&/5k)co.

SSG: -0.09< Q/5<0.53

RDT: 000< 9/5<0.50

2DMFI: -0.063< /5 <£0.502
SL: -0.14< §/5<0.40

FLT: =0.11< /5<0.39
Near the point of linear neutral stability /5 = 1/2 both the SL and the FLT models predict a
premature restabilization at values of /5 20% and 22% lower than that predicted by the linear
theory. The 2DMFI model is within 4% of the linear prediction.

None of the models tested, linear or nonlinear, captures the point of maximum kinetic energy
growth at (2/5)m4z = 0.25. To do so would mean that the equations would exhibit a Richardson
number similarity which, as Speziale and Mhuiris (1989) have shown, is not admitted by the Navier

Stokes equations. The two models that come closest to (£2/5)mar = 0.25 are SSG at 2/ = 0.22,
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which was calibrated using this fact, and 2DMFI at ©/S5 = 0.2 which was not calibrated using
any rotating flows. The current modeled dissipation equations predict a (P/€e)oe = —2b125k/e =
(Ce2 — 1)/(Ce1 — 1) = const., where the constant is model dependent but independent of rotation
rate. The constant attains the value for the equilibrium homogeneous shear for arbitrary rotation
rate, a fact which is not consistent with observation. In a flow that is stabilized by rotation, say
Q/S = 1, production must be less than dissipation for the equilibrium state to be reached. The
dissipation equation cannot be used for calibration in rotating flows without compromising the
model when a dissipation equation capable of predicting the stationary values of (P/e)s = f(£2/S5)

becomes available.

Case 4: Homogeneous shear with curvature

For the homogeneous shear with streamline curvature the mean strain and rotation tensors are §;; =
1/25%(8i1652 + 6:28;1) and Wi = 1/2W*(8;16;2 — 6:26;1) where §* = §(1 — stb) and W* = §(1 + stb)
where stb = (U;/R.)/S is the stability parameter. The geometry for the curved homogeneous shear
follows that of Holloway and Tavoularis (1992): R, is the radius of curvature of the flow and U,
is the axial velocity at the centerline and the crosstream gradient of the axial velocity is the shear
Ui,2=S. The stability parameter has been renamed stb so as not to confuse it with § which is
traditionally used for the mean shear. The kinetic energy growth rate is suppressed, relative to the
homogeneous shear, for stb > 0 and increased for stb < 0, while for stb > 0.05 the experimental

data indicates a relaminarization.

Figure 3 compares the model results to the experimental data for b;2 versus stb. The plot has been
generated by computing the flow from the beginning of the straight section of the wind tunnel to a
value of St = 10 which corresponds to the end of the curved section. The initial conditions on the
second order moments are given by the experimental data. The initial condition on the dissipation
rate is determined by matching to the kinetic energy growth rate at the beginning of the straight

section.

The different models all capture the trend in the stabilization/destabilization with respect to the
stability parameter. The primary difference in the predictions of the different models seems related
to their ability to capture the homogeneous shear at stb = 0. The results of the different models
would be in more agreement for negative and small positive values of stb if they predicted the same

results for the homogeneous shear.

The bifurcation diagram for the second order models, in Figure 4, was generated by letting the
solution procedure go to its asymptotic state. There is a critical value of stb. at which the stabi-

lizing effects of curvature begins to causes a negative kinetic energy growth rate, which ultimately

21



relaminarizes the flow. The critical values, stb., predicted by the different models, are

H&T: stb. = 0.05
2DMFT : sth, = 0.067
FLT : stb. =0.075
S5G: stb, =0.10
SL: stb, =0.105
where H&T is from the experimental data of Holloway and Tavoularis (1991). There is a consistent
trend for the SSG, 2DMFT and FLT models, when compared to the critical values for the rotating
shear: the higher (€2/5), for stabilization of the flow correspond to higher stb.. The SL model has

small but nonzero £/Sk over the range 0.25 < stb < stb..

Case 5: Two and three-dimensional strains

The rapid pressure model is used to compute three strain flows: the plane strain and the axisym-
metric contraction and expansion. These flows are another test case as the rapid pressure model
has not used these flows to set the calibration coefficients. The results are compared to the direct
numerical simulations of Lee and Reynolds (1985). Because the simulations are conducted at low
Reynolds number the anisotropies are expected to be somewhat higher than those of a fully de-
veloped turbuelence. However the use of the physical experiments conducted at higher Reynolds
number is also somewhat tenuous as the initial conditions on ¢/Sk, as has been pointed out by
Speziale et al. (1991), are not known with certainty. The same test cases as those given in Speziale
et al. (1991) are used. Our results are also compared to the SSG model as it appears to be the
current model that gives the best results. The evolution of the kinetic energy for these flows is not
presented; the results for the models are in very good agreement with the data and each other and

do not definitively distinguish between the various models. -

Figure 5 shows the evolution of the anisotropy for the plane strain, Si; = S$*(6:16;1 — 6i26;2)
starting from isotropic initial conditions. Figure 6 and 7 shows the evolution of the anisotropy for
the axisymmetric contraction and expansion. Here for the contraction S;; = §*(6i16;1 — 1/26i36;2 —
1/26:36;3). For the expansion § is replacesd with —S. Results for all the plane and axisymmetric

strain flows capture the trends nicely.

8. General discussion

The constraints of geostrophy, realizability, joint-realizability, normalization and continuity have
been used to create the 2DMFI model. The use of a realizability type constraint to obtain values
for unknown coefficients in the models, in the case of the strong form of realizability, has been
criticized on the grounds that one should not use an extreme state to set the coefficients in an
equilibrium model. This certainly is the case in any rigorous interpretation of the statement -
requiring all the scales of the motion to satisfy the indicated limit. However, from the point of

view of a useful engineering approximation, it should be kept in mind that < u;u; > represents
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an integral over all scales of the motion: from the production scales at k¢ ~ 1 and larger to the
dissipation scales k7 ~ 1. In a turbulence with a x~%/3 inertial subrange in which there is enough
of a separation of scales for a second-order simulation to be useful, say at least Re; ~ 10*, the ratio
between the dissipative and the energy containing length scales is /¢ ~ Re;a'/4 ~ 1000 and the
flow scales range over 0 < k¢ < 1000. However, approximately 85% of the energy of the motion is
contained in the first decade k€ < 10: the major contribution to < u;u; > is from the scales of the
motion greater than one tenth of the production scales, for which x¢¢ ~ 1. If only the largest 1%
of the flow scales, i.e. from 0 < ¢ < 10, begins to lose an eigenvalue of the Reynolds stress tensor,

through some dynamical or kinematical agency, < u;u; > begins to approach the realizable limit.

Part of the reluctance to accept the second-order modeling technique is that turbulence simulations
of complex inhomogeneous flows with multi-dimensional mean flows which may have body forces,
streamline curvature or rofational effects, are extremely difficult to compute. ;From a strictly
practical point of view - computability - incorporating the realizability constraints into the models
for unknown correlations has some very tangible and beneficial effects. During the convergence to
a solution, from more or less arbitrary initial conditions, the iteration will be plagued with negative
normal stresses and correlation coefficients larger than one. When this occurrs the solution is clipped
and the solution procedure restarted from the new clipped initial conditions. The frequency of this
clipping and resetting procedure is substantially reduced (in simple flows even eliminated) when

using realizable models.

How one gets to a realizable turbulence is not an issue in problems with steady states, as long as
the final state is realizable. This, however, is not the case for problems that are unsteady. For time-
varying flows, varying on the integral time-scale, the quasi-steady problem for which the second-
order methods are still suitable - this issue becomes serious. Qur experience with the Reynolds
averaging procedure, in buoyantly driven elliptic flows with rotation, indicates that it acts as a low-
pass filter: the rapidly fluctuating instantaneous dynamics are subsumed by the averaging procedure
leaving the slow-time large-scale parts of the flow, evolving on time scales commmensurate with the
integral time scale, to be captured by the computation. If the simulation is to reflect the physics
of the time evolution of the flow, it must stay realizable. Clearly excessive realizability violations,
requiring a clipping and resetting of the solution, which produces a solution that never evolves far
from the transient associated with the most recent clipped initial condition, are not acceptable.
In such flows, satisfying the realizability constraint has very important consequences regarding the

validity of the time evolution of the flow.

The coefficients of the tensor polynomials used to represent an unknown correlation in a constitutive
relation are, according to the theory, non-constant functions of the invariants of the independent

tensors and thus depend on the state of the turbulence. These coefficients, in "realizable” turbulence
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models using some form of the strong realizability constraint, are obtained by requiring that the
rate of change of a positive semi-definite quantity be zero when some limit state is achieved. The
coefficients so obtained are constants and are strictly valid only at the limit state. To the limit state
value of the coefficients, which are regarded as a zeroeth order approximation to the coefficient in
a general flow, ad hoc corrections are then added. These corrections, which vanish as the limit
state is approached, require some sort of numerical optimization with well known simple flows.
This summarizes the methodology used in other ”realizable” turbulence models. In the linear SSG
model the coefficients are, for the most part, constants that are also set by matching to a limit state.
In the case of the SSG model the structural equilibrium limit is used to set the constants in the
model. This is a much closer approximation to the turbulence expected to be seen in engineering
problems. The constants in the SSG model may be viewed as the values the nonconstant coefficients

have near the equilibrium state.

In the present method the realizability principles are used to obtain non-constant values of the
coefficients in the constitutive relations that are valid for all states of the mechanical turbulence.
Recall that the basic form of the rapid-pressure model is comprised of two parts X?jkl and F'Xg,c,,
the "off-realizability” correction. X ?jk, satisfies simultaneously the five constraints - geostrophy,
realizability, joint-realizability, normalization and continuity, while F X,-I;H, also obtained analyt-
ically, satisfies the substantially less extreme joint-realizability as well as the homogeneous form
of the normalization and continuity constraints. Thus, although the model is consistent with the
realizable limit state, the values of the model coefficients are not the values the coefficients have at
the limit state. An extreme state of the flow has only been used to set the coefficients in the X?jk,

part of the model - the additional FX};H terms are, for the mechanical turbulence, fully general.

It is to this basic model, valid for all states of turbulence not just at the realizability limit, that
one adds the F. X7}, term that is necessary to obtain the equilibrium values in the flows evolution
from arbitrary initial conditions. The requirement of asymptotic consistency with an equilibrium
state, first used by Speziale ef al. (1991), is the single most important and consistent physical
requirement one can impose. Second-order closure methodology is built around the assumption
that there is, to a suitable approximation, for the class of flows to which second-order methods
are appropriate, a equilibrium state and in the absence of disturbing forces the flow relaxes to
that state on a time scale similar to the eddy turnover time. It is precisely this phenomenological
behavior that is built into the model by requiring the fixed points of the modeled equations to be
consistent with those obtained from experiment. The assumption that allows the parameterization
of the two-point correlation as a local function of the anisotropy tensor, X;jx = Xijri(bij), is such

an equilibrium assumption.

The penalty paid for these additional features associated with the satisfaction of the mathematical
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constraints is a more complex model. It should, however, be pointed out that the present 2DMFI
model has the same tensor basis as the FLT model and is therefore no more complex except for
the expressions for the nonconstant coeflicients. Moreover, the penalty is slight in the light of
the reduction of the computational difficulties found during the calculation of quasi-steady time
evolving flows with this representation for the rapid-pressure. The model, along with several other
models, has been used to compute inhomogeneous buoyancy driven rotating flows that occur in
the Czochralski crystal growth melt in which the Reynolds stress are three-dimensional, Ristorcelli
and Lumley (1991a, 1993), Ristorcelli (1991). In computing these time varying flows it was found
that the present 2DMFI model produced far fewer realizability violations during the course of the
flows evolution. For a quasi-steady flow this is a crucial point: every time realizability is violated
the solution is reset and the solution never evolves past the transients associated with reseting the
initial conditions. Such a computation cannot be expected to reflect an ensemble average of the

original system.

9. Suggestions for future work

In the effort to produce a representation for the rapid-pressure correlation valid for the class of
flows to which second-order modeling is suitable, some shortcomings in the data on homogeneous
"building block” flows have become apparent. Though the homogeneous shear seems reasonably
well-documented it is not clear that the asymptotic states have been reached in some of the exper-
iments. Moreover the discrepancy between the high values of b7 obtained in the DNS versus those
seen in the laboratory data has not been explained. Additional work expanding on the notion of
two classes of flows, according to Tavoularis and Karnik (1989), and therefore the possibility of two

equilibrium states, merits investigation.

For the homogeneous shear with rotation, a very basic flow, there doesn’t seem to be substantial
data, LES, DNS or experimental definitively describing its stationary states. At the very least an
assessment of the bifurcation diagram (£/S5k)o versus (£2/5)c predicted by the linear theory would
be useful. Also the equilibrium values (P/¢)s would be useful for further developments regarding
the dissipation equation’s dependence on rotation. This may remedy the under-prediction of the
kinetic energy growth rates as a function of /5 for all the models. The present class of dissipation
equations predicts an asymptotic state in which (P/e)s is a model dependent constant, which for
all rotation rates has the same value that it does in the asymptotic shear. Had the stationary
values of the anisotropy tensor and (P/¢)o and (¢/5k)s been available application of the present
methodology would have produced a set of modeled evolution equations whose fixed points matched

to the fixed points of the rotating shear, independent of the deficiencies in the dissipation equation.

The present rapid-pressure model is expected to distinguish itself in complex three-dimensional

flows. For the planar flows for which test cases exist the model out-performs the nonlinear models
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using realizability type constraints. It is only moderately better than the topologically generic
form of the SSG model suitable for simple planar flows. It is unfortunate that there does not exist
any suitable DNS or LES of flows in which the presence of a body force causes the larger scales
of the motion to become quasi-two-dimensional. Such a test case would help further establish the
utility of incorporating some of the more complex physics into the structure of the model as well
as perhaps pointing out the potential deficiencies of models developed using two-dimensional mean

flows.

10. Summary and Conclusions
A new representation for the rapid-pressure strain correlation with a minimum of ad hoc constants

has been devised. The rapid-pressure model produces the proper behavior in five different limits:

1) the geostrophic limit in which the eigenvalue of the Reynolds stress tensor, < u;u; >, along the

axis of rotation vanishes,

2) the realizable limit in which an arbitrary eigenvalue of the Reynolds stress vanishes,

3) the joint-realizable limit in which an eigenvalue of < #8 >< w;u; > — < u; >< fu; > vanishes,
4) the isotropic limit in which the anisotropy tensor, b;; = 0,

5) the asymptotic limit of a structural equilibrium in which D/Dt b;; = 0.

The model has the general form
Xijwt = X+ FXE+ FX3y

where the X,;x are polynomials in the anisotropy tensor. X?jk, satisfies the five constraints: the
limit states of geostrophy, realizability, joint-realizability, and the integral constraints of continuity
and normalization. ng, satisfies the three constraints of joint-realizability, continuity and normal-
ization. Both X?jkz and FX{;H are obtained analytically: they represent the simplest analytical
expressions that are capable of satisfying all the mathematical constraints. X[, is obtained by
requiring asymptotic consistency with the structural equilibrium state for homogeneous shear. Ex-
perimental data is required to determine X73;. The stationary values of the anisotropy tensor, b7,
and (P/¢)o and (¢/5k)co are inserted into the modeled evolution equations to obtain the structural
equilibrium component of the rapid-pressure, X5;. This insures that the fixed points of the mod-
eled equations match the experimentally determined fixed points. This process has been carried
out for the homogeneous shear producing a model that should be accurate for three-dimensional

mean flows in which the mean shear is the predominant production mechanism.
Several points regarding the 2DMFI model merit mention:

1) All the coefficients, A;, in the Xy + FX,-’;,C, portion of the model are obtained from first

principles and are valid for all states of the mechanical turbulence. They take on their values at
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the limit states only when the limit states are achieved unlike other models.

2) The present form of the model is consistent with the stationary state of homogeneous shear. This
insures that in the absence of any disturbing forces, the predicted flow will relax to the equilibrium

state.

3) The model is at present the only model which is consistent with predictions of the Taylor-
" Proudman theorem assuring that the modeled equations are frame-indifferent when the components
of the Reynolds stress along the axis of rotation vanish. This frame invariance is the most notable
feature of the model and is expected to be important for the computation of engineering and
geophysical flows in which body forces play an important role. In meteorological flows the present
2DMFI rapid-pressure correlation is consistent with the geostrophic limit atmosphere attains above
the planetary boundary Iaye_r. As such the model will be relevant to the computation of mesoscale

meteorological flows.

It is expected that the satisfaction of the 2DMFT principle will be important in three-dimensional
flows in which the largest scales of the motion are two-dimensionalized by body forces or kinematic
constraints. These flows include: 1) turbulence in which a strong stable stratification suppresses
the vertical component of the velocity field; 2) turbulence in the flows affected by magnetic fields
3) turbulence influenced by rotation such as those in crystal growth processes or occurring in tor-
nadoes, swirl combustors and turbines; 4) turbulence influenced by Coriolis forces in which the
largest scales of the flow undergo a Taylor-Proudman reorganization (Ro < 2) as might occur in
large scale geophysical flows; 5) turbulence near a free surface at which one of the components of
the fluctuating velocity is suppressed and the mean flow is two-dimensional; 6) the environmen-
tally important shallow water free shear flows as the shallow water jet associated with waste heat
exchangers, near-shore pollution dispersal, tidal estuary flows, and mixing associated with thermal
and salinity inflows in lakes and rivers. However, until suitable data bases, DNS or LES, of these
complex flows with body forces become available the full potential of a rapid-pressure model built
from first principles in three-dimensional flows can not be verified. The present model does however
reproduce the experimental data at least as well as the currently available models for a wide class

of two dimensional flows.
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Appendix 1: A synopsis of the final rapid-pressure correlation representation
For convenience and clarity the final form of the model is summarized here. The general final form

of the model is:

Ij /2q2 [C3 — 2IICY + 3I1ICY')S;;

C4[b,'p5pj + bjpSpi — 2/3<bS > 6.'_,'] + Cl' < b8 > [b?j + 2[[/35,‘1']
Cs[b,'prj + bijpg] + [Cs < bS§ > +C;" < bS >]b,‘j

C7[b?p5pj + b?- Spi —2/3 < B2S > &;j]

CS[b?prj + bijpi] + CQ[biqupbgj + bijqpbgi]-

+ 4+ + + 0l

For flows in rotating coordinate systems, W;; appearing in [;; must be replaced by the total rotation
tensor Wi, + €;ixQk. The coefficients C; are given by a sum of the basic model coefficients, B;,
which come from first principles, and the calibration coefficients A{. The basic model coefficients

are related to the coefficients A; in the fourth order tensor polynomial expression by

By = 2(A1+ A) = (2/27)[41 + 4217 — 0.1F(221 + 42011))/1 1,

BY= Ao+ Ao = —(14/3)(1 4 311)/I14+ 0.6F/(1+ 31T)
B:’;" = —1/3(A11 + A2 +2443) = (55 + 8411)/311y

By = Az+ Asj+2A5=3/11,—09F/(1+3II)

B;" = A+ A +443=-9/11;

Bs= As— Aq = —(1/30)(10+ 21F)/(1 + 3IT)

Be= 2Ag+4A1o = —1811/1I;+ 3F/(1+3II)

B; = A6+A7+2A3—2A9—2A10=-—9/]Id—1.8F/(1+3II)
Bs= As— A7 =(1/5)(3F - 5)/(1 + 31

By = Au—-A12=—3/(_1+3II)

(l

The A; are given in Appendix 3. The C;, which reflects the application of the additional constraint,
asymptotic consistency with an equilibrium state, are obtained from the B; by C; = B; + FA;.
They are given by '

Cs = Bz — 2F(10A§ + 345 + ASo)I/5 — F(A, + ASy + 14A5)IIT/5
3 = B3+ F(A§ + Afp)

CY' = B3' - 1/3F(Af, + Aj; + 245;)

Cy= By+ F(=3AS + IT(AS, + AS, + 4455))

Cy'= By + F(A}, + Afz + 4475)

Cs= Bs+ F(=T/3A% + (= A5, + 345, + 4A5,)T1/3)
Co= Bs+ F(245 + 445))

Cr= Br—3F(AS+ A+ AS)

Cs= Bs—1/3F(TAS+ 345 — AS)

Co = By + F(Af; — A7)

where the AS are expressed in terms of the seven free parameters A${5,8 — 13}. Without further
specifying the ca,lii)ration coefficients, A, the above rapid-pressure model is general, suitable for the
flows for which second-order modeling is suitable. Calibration to a particular archetypal flow, by
matching the fixed points of the modeled evolution equations with experimentally determined fixed

points, will result in a model suitable for diverse flows within that class of flows. For a flow in which

31



the dominant production mechanism is associated with the mean shear the hommogeneous shear
is used to set the model coefficients. Asymptotic consistency with the homogeneous equilibrium
shear and a linear model for the return coefficient produce the following values for the calibration

coefficients:
A = -0.29 — 0.06(Af, — A45)
A§; = —3.6+ 545, — 245, — 12.745 - 3.84§
$9= —24.5—44.245, — 2453 + 2945 — 8A§

where Ag = 0.8, A5 = —1.0, A{; = 0.01, Af3 = 0.
The homogeneous form of the continuity and normalization conditions have been used to produce
relations between the free parameters. They are:

AS +4A5 — 2A51T + TTI(AS, + ASy + 2453) =0

S+ A+ BAS — TI(AS; + A5, + 4455) = 0
AS + AS + BAS + AS + A5y =0

3AS + 2A5 — 2AGIT + 4AITT =0

3AG +4AE - 211(A§; + 2A03) =0

3AS +4A5 +2A5,=0
The fact that the A7 must satisfy these equations has been used to express six of the AS{1—4,6,7}
in terms of the seven A${5,8 — 13} in the expressions for the C; = B; + F AS.

Appendix 2: The calibration coefficients in the rapid-pressure representation
The model has been calibrated to match the fixed points of the homogeneous shear. The calibration
process is described more detail in this appendix. The following equations describe the evolution

of the anisotropy:

D/Dt bij = —QGikpbijk - 2€jkpbpi9k — [b,‘pUj wp +bij,',p —-2/36,']' < bS >]
—2/35,‘_7' + 2b;; < bS5 >+ I_LTJ /q2 - (Ch - 2)b,-je/q2 + Cz[b?j + 211/35,'1'15/(]2

For the planar flow case with axial mean flow and mean shear, U, ,;, the algebraic equations for the

fixed points, setting D/Dtb;; = 0, become

(byy + 1/3)(2 + 4by3Sk/e) — 4b1ySk/e + 4(Sk/e) T}y /(4kS) — Cibyy — 2/3
+Cz(b11b11 + bygbia + 211/3) - S(Q/S)(Ské')blz =0

b12(2 + 4b125k/€) - 2(622 + 1/3)Sk/5 + 4(Sk/6) I—H2 /(4kS) - Clblg
+Cgbu(b11 + bzz) + 4(9/5)(5’6/6)(()11 - 622) =0

(b22 + 1/3)(2 + 41)125’0/6) + 4(516/6) H;Z /(4k5) — C1byy — 2/3
-I-C-z(bnbzz + b12b12 + 2[[/3) + 8(9/3)(Sk/6)b12 =0

(b33 + 1/3)(2 + 4b125k/€) + 4(5]6/6) H§3 /(45’6) — C1b33 — 2/3 + Cz(b33b33 + 211/3) =0

The last equation for b33 is not linearly independent as b;; = 0. The following fixed point values are
taken to be representative: b33 = 0.203, b33 = —0.156, b33 = —0.143, b33 = —0.06, (5k/¢) = 5.54,
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(P/¢)eo = 1.73. are inserted into the algebraic equations above. The values of the invariants
corresponding to these values of the anisotropy tensor are: Il = —0.0604, 111, = 0.0038, F, =
0.5613. The solution of the algebraic equations describing the stationary state of the homogeneous
shear produces the following values for the calibration coefficients,

A = —0.3388 — 0.06(Ag + Afy) + 0.015C7° — 0.008C3°

¢ = —14.35 — 2AS; — 12.68A45 — 3.80A§ — 5.072A5, + 3.157C7° + 0.5898C3°

A, = —16.87 — 245, + 28.TAG — 8.0545 — 44.81A5, — 12.17CF° — 0.291C5°.
The model has been left as general as possible - allowing for any return term of the canonical form,
—Cheb;; + Cg[b?j + 211/36;;], were the C; are not necessarily constants but have achieved their
asymptotic values C; = C®°. Choosing a linear Rotta type return term setting the nonlinear return

coefficient to zero, C; = 0, produces

AS = —0.29 - 0.06(Af, — Ag)
A§; = —3.6+5A5, — 2A{; — 12.7TA5 — 3.845
f2 = —24.5-44.2A7, — 2A7; + 2945 — 8Ag
where the following values of the free parameters have been chosen: A§ = 0.8, 4§ = —1.0, Afy =

0.01, A5 = 0. These indicated calibration coefficients are appropriate for the class of flows in which

the mean shear is the predominant production mechanism.
The component form of the rapid-pressure used in the equations for the stationary state is

1./2¢25* = Cybi2/3 4 CY'(b11byy + biabia + 211/3)bya + Csbio(—-W*/S57)
+[Ce + C§'(b11 + b22)]b11b12 + C7(b11 + ba2)b12/3
+Cs(b11 + b22)bya(—W*/8*) + Co(W*/5*)b1a(b12b12 — b11b22)

H;2 /2q2S"' = C4b12/3 + C"‘"(bngzz + biobia + 211/3)b12 + Csblz(W*/S*)
+[Cs + C{'(b11 + ba2)]bazbrz + C7(b11 + ba2)br12/3
+Cs(by1 + ba2)b12(W*/S*) + Co(—W*/85*)b12(b12b12 — b11b32)

n{z /2q25"" = 1/2[03 - QIIC:’;' + 311105”] + 1/204(b11 + b22) + C;”(bu + bzg)bublz
+C5(b11 — bz )(W*/25*) + [Ce + Cy'(b11 + ba2)]b12b12
+1/2C7(b11b11 + 2b12b12 + bagbas)
+Cg(b11b1] - bggbgg)(W‘/?S*) + Cg(b11b22 - b12b12)(b11 - b22)(W*/2S*)

T53 /2¢2S* = —2/3Cyb1a + C§'(basbaz + 211/3)bya + (Co + C4'(br1 + b22))b12b33
—2/3Csbia(bry + bsa).
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Appendix 3: The representation of the integral of the two-point covariance
The general form of the fourth-order tensor polynomial used to model the volume integral of the

derivative of the two-point covariance, X,;k;, appearing in the Reynolds stress equation is

Xijki/ < uptp >=  A18i;00 + A2(bikbji + 8ubjx)

A36t1bkl + A4b,15k¢ + AS(b:kaﬂ + btl‘s]k + 61kb]l + 6;lb1k)
Asé,kal + A7b 5};1 + As(b wSit + bd61k + 6;b% 5+ G,ijk)
Agb;;by + Am(b.kb,l + bibjix)

Anbi;bf + Ar2blibi + Ara(b3bi + blbjk + bib? + bub?y)
A]4b2 b2kl + A15(b?kb?, + btzlb_?k)

+ + + + +

The coeflicients with all free parameters set to zero, as derived by Ristorcelli (1991) or in Ristorcelli
and Lumley (1987,1991), are

Ay = (11111 +73)/2711; — F(42011 + 239)/13511I,
Az = —(6911 + 32)/27114 + F(42011 + 257)/27011,
Az = (3II+4)/3I1; - F(11/10)/(1+ 3I1)
Ag= (15114 11)/311; — F(4/10)/(1 + 311)
As = =3(1+3I1)/311,+ F(3/10)/(1 + 3II)
Ag = —(102IT +61)/311,
A7 = —2(33I1+20)/311;— F(6/10)/(1 + 31I)
Ag = (42IT+23)/311,
Ag = —(57IT +28)/3I1;— F(3/10)/(1 + 31I)
Ao = (1511 +14)/311;+ F(9/10)/(1+ 311)
An = —(102IT+61)/11,
Aja = —2(33I1+20)/114
Az = (4211+23)/11,
A14 =0
Al5 = 0

where I[; = (1 +3II)(7+ 1211), F=1427111+911,where I] = —1/2b;jb,'j and I1] = l/3b,'pbpjbj,'.
The rapid-pressure correlation integral, X,x;, appearing in the heat-flux equations, is used to

derive the A; through the joint-realizability constraint. The general form of the third-order tensor

polynomial used to model X,; is included for completeness:

kaj = Di< Bup > 5kj + D2[< Buy > 6pj+ < OuJ- > 6pk]
+ D3 < Bup > bij + Da[< Gug > byj+ < Ouj > byi]
+ Ds < 0up > b} + De[< up > b2+ < Ou; > b2, ]

[D7bgpbi; + Da(bgkbp; + bgjdpk)] < Oug >
[D9bqpbkj + Dlo(bqkbm' + bqupk)] < 0uq >
[Danpsz + D]g(bqkbgj + bqugk)] < fug >

+ + +

[D13bgp6kj + Dl4(b3k6pj + bgjépk)] < 0uq >
[D1sb?,b; + D1o(byby; + b2,b,1)] < Bug >
[D17b sz + Dlg(b kbz + b2 bpk)] < qu >

+ + +
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Where the D; are given in Ristorcelli and Lumley (1987,1991) as

Dy = —(31211% + 14911 - 21)/5114 — F(1/5)/(1 + 311)
Dy = (4811°+ IT-14)/511;+ F(3/10)/(1 + 31T)
D3= —(324I1% 4+ 22211+ 17)/113— F(3/10)/(1 4 31I)
Dy= -3/(7+12I1)+ F(9/10)/(1+ 3I1)

Ds= —(102IT +61)/11,

D¢ = (4211+23)/114

D, = 20311+ 4)/5II;— F(3/5)/(1+ 31I)
Dg = 27(211+1)/5114

Dg = (4211 +23)/114

Do = (4211+23)/114

D3 = -8(3911+22)/5114

Diy= 2(24IT+17)/5114

Dys'=  =27/(1 4 311)

and Dy = Dy = Dig = D17 = Dig = 0. The first term of each of the coefficients A;, D; satisfies
the constraints of continuity, normalization, realizability, joint-realizability and 2DMFI. The terms
proportional to F are the terms that contribute to the rapid-pressure when the turbulence is away
from both the realizable and the 2DMFI limits.

Appendix 4: The Cayley-Hamilton theorem generalization
Referénce has been made to a generalized Cayley-Hamilton theorem, Rivlin (1955), relating different
powers of products of matrices.

ABC +ACB + BCA+ BAC+CAB+CBA =
A(KBC>-<B><C>)+B(<CA>-<C><A>)+C(< AB>-<A><B>)
+(BC+CB)< A>+(CA+ AC)< B> +(AB+ BA)<C >
+1[< A><B><C>-<A>}XBC>-<B>AC>-<(C><AB>
+ < ABC > + < CBA >]

The Cayley-Hamilton generalization is easily derivable from the Cayley-Hamilton theorem applied
to sums and differences of matrices A, B, C. The theorem is useful in eliminating redundant tensor
bases in temsor representation theorems. Here <> is used to indicate the trace. The Cayley-
Hamilton theorem for the anisotropy tensor is 3 = 1/3 < 5* > 1 + 1/2 < b* > b. The theorem can
also be used to express

bSb = —[b2S + Sb?]+ <bS > b+ 1/2<b? > S+ < b?S > 1
bSb? + b2Sb = —1/3 < b3 > S+ < b?S > b+ < bS > b?

Appendix 4: The rapid-pressure models
The detailed form of the pressure-strain models referred to in this paper are as follows:

The Launder, Reece & Rodi Model

4 2 ,
Hij = —2C15bij + gK Sij 4 CzK(b,'ijk + bij,'k - gbklskléﬁ) + C3K (b,‘ijk + bjkW,'k)
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where
Ci =15, Cy; =175, C3=1.31

The Shih & Lumley Model

4 2 4
I;; = -—pfebj; + gKS,‘j + 1205 K (i Sjx + bijik—gbk,Sk,&,-) + 5(2 — Tas)K (bix Wik + bjxWix)

4 4
+5K(bilblm5jm + bj1bim Sim — 2bik Skibi; —3bg Skibi;) + gK(bilblijm + bjtbi Wim )
where

B=2+ geXp(—7.77/\/Ret){72/\/R'e' [+ 80.1 In[1 + 62.4(~IT + 2.31ID)]})

F=1+9IT+27III, II= —%b,-jb.v,v, I = %b,-jbjkbk,-

4 K? 1 4 1
Ret—g-l;, a5—m(1+gF2)

The Fu, Launder & Tselepidakis Model
1 4 2
II;; = Brebi; + Bae(binby; — gbklbklfsij)‘*‘gk Si; + 12K (bikSjk + bk Sik — gbk15k15.'j)

26 4
+EK(biijk + bk Wik) + gK(bikblejl+bjkbleil — 2bik Skibij — 3bkiSkibis)

4 14
+3K (bixb Wi + bjrba W) — ?1\ [8IT(bix Wik + b Wik )+12(bisbit Wimbm; + bjkbiiWim bpmi)]

where

B1 = 120ITFY2 4 2FY/2 _ 9 B, = 1441 F'/?

The Speziale, Sarkar & Gatski Model

1
II;; = -—-(2C1€ + C;'P)b;]‘ + Che (b,’kbkj - gbklbkl‘sij) + (Cg — C';IIb%)KS;J’

2
+C4 K (b;ijk + bk Sik — §bk15k15gj) + Cs K (bix Wik + bjxWik)

where
Cy =17, C; =180, C; =42
4
C3 = g, Cg = 130, C4 = 1.25

Cs = 0.40, I, = b;;b;;

36



k/k,

St

Fi‘gﬁre 1. Evolution of the kinetic energy in the homogeneous shear. The experiments of
Bardina et al. (1981) compared to the four different models: 2DMF1 y SL ===,
FLT ----- , and SSG ———

37



5 ' l 1 l 1 I i ' ]
4 - _
3 o -
o o
£ a -
~ o
2 I -a =
o
N a
g -
uﬂgooo°°°°o
1 [ooonngdB8aasanaasaa -
O 1 l 1 l 1 l 1 l 1

0 2 4 6 8 10
St

Figure 2a-e. Evolution of the kinetic energy in the homogeneous shear with rotation for
Q/S=0 0256 ———, 0.5 ----- . a) Bardina et al. (1981), b) 2DMFI, ¢) SL ,

d) FLT , and e) SSG.

38



St

Figure 2b

39



Figure 2c

St

40



Figure 2d

St

41



Figure 2e

42

10



0.3 . - :

-0.15 0.00 - 0.15
stb

Figure 3. Of‘f-‘di'ag-i)riai- compqﬁerfi:rc;f ‘the an‘isdx_"oj}‘)y iti.exxwlsor as a ‘fu_‘r»xct".i«ggpf the ét;bility
, 988G ——— ,SL

parameter for the homogeneous shear with curvature: 2DMFI

——- ,and FLT ----- , 9SG — ——

43



0.4 ———/—————

e/Sk sgn stb
o o
20 W

| |

o
-
]

0.0
—0.3 —0.2 —0.1 —0.0 0.1

stb

Figure 4. Bifurcation diagram for the homogeneous shear with curvature for the four different
models. 2DMFI ySL-=- ,and FLT ----- , 998G ———
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Figure 5. Time evolution for the anisotropy tensor in plane strain for £o/Sko = 2.0. The
predictions of the 2DMFI model , the S model ~—— , and the direct numerical
simulations of Lee and Reynolds (1985).
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Figure 6. Time evolution for the anisotropy tensor in the axisymmetric contraction for
£0/Sko = 0.179. The predictions of the 2DMFI model , the SL model ~-~ | and the
direct numerical simulations of Lee and Reynolds (1985).
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Figure 7. Time evolution for the anisotropy tensor in the axisymmetric expansion for
€0/Sko = 2.45. The predictions of the 2DMFI model , the SL model =-- , and
the direct numerical simulations of Lee and Reynolds (1985).

47



Form Approved

REPORT DOCUMENTATION PAGE o o158

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching axisting data sources,
gathering and maintaining the data needed, and completing and reviewing the coflection of information. Send comments re,arding this burden estimate or any other aspect of this
collection of information, including sugvslions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1994 Contractor Report

4. TITLE AND SUBTITLE ' 5. FUNDING NUMBERS
A RAPID-PRESSURE CORRELATION REPRESENTATION CON-
SISTENT WITH THE TAYLOR-PROUDMAN THEOREM MATERIALLY- C NAS1-19480
FRAME-INDIFFERENT IN THE 2D LIMIT WU 505-90-52-01

6. AUTHOR(S)

J. R. Ristorcelli

J. L. Lumley
R. Abid

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Institute for Computer Applications in Science REPORT NUMBER

and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

ICASE Report No. 94-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Langley Research Center NASA CR-191591
Hampton, VA 23681-0001 ICASE Report No. 94-1

11. SUPPLEMENTARY NOTES
Langley Technical Monitor: Michael F. Card

Final Report
Submitted to Journal of Fluid Mechanics

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified-Unlimited

Subject Category 34

13. ABSTRACT (Maximum 200 words)

A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equations, consistent
with the Taylor-Proudman theorem, is presented. The representation insures that the modeled second-order
equations are frame-invariant with respect to rotation when the flow is two-dimensional in planes perpendicular
to the axis of rotation. The representation satisfies realizability in a new way: a special ansatz is used to obtain,
analytically, the values of coeficients valid away from the realizability limit: the model coefficients are functions of
the state of the turbulence that are valid for all states of the mechanical turbulence attaining their constant limiting
values only when the limit state is achieved. Utilization of all the mathematical constraints are not enough to specify
all the coefficients in the model. The unspecified coeflicients appear as free parameters which are used to insure
that the representation is asymptotically consistent with the known equilibrium states of a homogeneous sheared
turbulence. This is done by insuring that the modeled evolution equations have the same fixed points as those
obtained from computer and laboratory experiments for the homogeneous shear. Results of computations of the
homogeneous shear, with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results
are consistently better, in a wide class of flows which the model not been calibrated, than those obtained with other
nonlinear models.

14. SUBJECT TERMS 15. NUMBER OF PAGES
turbulence modeling; rapid pressure 51
16. PRICE CODE
_ __ A04
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified
NSN 7540-01.280-5500 Standard Form 298(Rev. 2-89)

Prescribed by ANSI 5td. Z39-18
T U.8. GOVERNMENT PRINTING OFFICE: 1994 - 528-064/86120 10



